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Abstract—For a void containing ductile material a continuum model of the loss of stress carrying capacity
due to void coalescence is suggested. This model is included in a set of constitutive reactions for a ductile
porous material, such that the process of void coalescence is assumed active, when the local void volume
fraction has exceeded a critical value. Predictions of the model are illustrated by a number of simple
analyses of shear band development in uniformly strained solids. Furthermore, the failure model is applied
in a numerical analysis of strain localization and fracture by a void sheet mechanism in the matrix material
between two larger voids. When coalescence has taken place in a small material region, this part of the
material has no more stress-carrying capacity. In the continued computations such totally failed material is
described as a fictitious elastic-plastic material with a very low yield stress.

1. INTRODUCTION

In a ductile metals failure by coalescence of microscopic voids is an important fracture
mechanism. Voids nucleate mainly at second phase particles, by particle fracture or by
interfacial decohesion, and subsequently the voids grow due to plastic straining of the
surrounding material. Fracture by coalescence occurs when the ligaments between neighbour-
ing voids have thinned down sufficiently. Such general coalescence is often observed in the
centre of the neck in a round tensile bar. In other cases localization of plastic flow takes place,
so that the void induced failure occurs inside a narrow shear band by the formation of a void
sheet.

Approximate estimates of the critical strain for coalescence can be obtained on the basis of
analyses of the growth of a single void in an infinite block of plastic material[1-3)], or by
computations for periodic arrays of voids[4]. In the continuum description of a porous ductile
material suggested by Gurson[5, 6] the effect of void coalescence is not directly accounted for;
but the load carrying capacity of the material vanishes as the void volume fraction approaches
unity.

Experimental studies discussed by Brown and Embury([7] and Goods and Brown(8) indicate
that coalescence occurs approximately when the length of the voids is equal to their spacing.
This means that the volume fraction of voids at fracture is far below unity, in the range of say
0.1-0.2. Based on these results it seems reasonable to use a critical value of the void volume
fraction as a criterion of final material failure in computations employing Gurson’s model. This
is particularly useful in cases where the failure criterion is satisfied simultaneously all over a
narrow region separating to body in two, as in the cases studied by Chu and Needleman[9].
However, in many cases failure will propagate into the material, see for example Tvergaard {10},
and here a more detailed description of the local loss of load carrying capacity at failure is
required.

A material model that approximately describes the nucleation, growth and finally coales-
cence of voids could be obtained by fitting experimental data with the parameters in a set of
rather general constitutive relations accounting for plastic dilatancy and for the possibility of
non-normality. Such constitutive relations have been suggested by Rudnicki and Rice[11] with
the main intention of describing the behaviour of rocks or soils. The same type of relations
have been discussed by Mr6z[121, and an alternative formulation is given recently by Nemat-
Nasser and Shokooh[13]. The porous material model of Gurson{5] does in fact belong to the class
of materials treated in [11], see Needleman and Rice[14]. This model limits the freedom of choice
of material parameters, by requiring agreement with simple rigid-plastic void growth analyses; but
still a number of parameters are free to be fitted with experimental data.

In the present paper the macroscopic effect of void coalescence is modelled within the
context of the Gurson model. The ductile fracture process is described as an apparent loss of
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active material volume, with a corresponding rapid decay of the average macroscopic stresses.
To illustrate the mode! the development of ductile fracture in shear bands is studied for a variety
of stress-states, assuming a homogeneous state of deformation inside and outside the band,
respectively. Furthermore, the model of coalescence is introduced in a numerical study of a
ductile fracture mechanism involving the interaction of larger voids with relatively small
voids[10]. In this computation the porous ductile material model is used to describe the
nucleation, growth and coalescence of small scale voids in the matrix material surrounding the
larger voids.

2.MATERIAL FAILURE MODEL

The possibility of final material failure, at some critical void volume fraction considerably
below unity, shall here be modelled within the context of the constitutive relations suggested by
Gurson[5, 6]. These relations make use of an approximate yield condition, of the form ®(c",
om ) =0, for a void containing ductile material. Here o is the average macroscopic Cauchy
stress tensor, o is an equivalent tensile flow stress representing the actual microscopic
stress-state in the matrix material, and f is the current void volume fraction.

Based on a number of experimental studies Brown and Embury[7] find that after nucleation
cavities elongate along the major tensile axis, and that two neighbouring cavities coalesce when
their length has grown to the order of magnitude of their spacing. This local failure occurs by
the development of slip planes between the cavities or simply necking of the ligament. The
critical void volume fraction estimated in [7] by a simple model is fc=0.15; but certainly,
depending on differences of microstructures, stress-states, etc. this value could vary in a range
of say 0.1-0.2.

When necking of the ligaments starts to occur, the stress carrying part of the cross-section
decreases much faster with further straining than predicted by a model assuming spherical or
circular cylindrical voids evenly distributed in the material. As a consequence the average
macroscopic stresses o decay rapidly. Such effects could be accounted for in the construction
of the yield function ®; but it seems natural, instead, to model this failure process as a loss of
active material volume, locally.

The change of the void volume fraction during an increment of deformation is usually taken
to be the sum of a contribution from the growth of existing voids and a contribution from the
nucleation of new voids. Here, an extra contribution modelling the failure process shall be
added, when the current void volume fraction exceeds a critical value. Thus, with () denoting
differentiation with respect to a loading parameter, we take

j = (f)growth + (f)nuclution + (f)tailure- 2.1

Before giving expressions for the different terms in (2.1) a few definitions corresponding to a
Lagrangian formulation of the field equations shall be introduced. A material point is identified
by the coordinates x’ in the reference configuration, and the displacement components relative
to this reference coordinate system are u'. The increment of the Lagrangian strain tensor 7; is
given by

. 1. . . .
i =3 (b + dy + e + ut i) 2.2)

where (), denotes covariant differentiation ix_] the reference configuration. The contravariant
components of the Cauchy stress tensor o/ and of the Kirchhoff stress tensor 7%, on the
embedded deformed coordinates, are related by the expression

1 =VI(Glg) o’ 23)

where G and g are the determinants of the metric tensors G; and g; in the current configuration and
in the reference configuration, respectively. Indices range from I to 3, and the summation
convention is adopted for repeated indices.
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The matrix material is taken to be plastically incompressible. Thus, the increment in (2.1) due to
the growth of existing voids is given by

Dgown = (1 = NG 2.4

where 7§ is the plastic part of the macroscopic strain increment. Nucleation of new voids
occurs mainly at second phase particles, by decohesion of the particle-matrix interphase or by
particle fracture. Needleman and Rice[14] have suggested a nucleation model of the form

(Dnucteation = Aoy + B(ay*) 13 (2.5)

which shall be used here. More complex nucleation models have been discussed by Gurson[6].
The effective plastic strain e, representing the microscopic strain-state in the matrix
material, is related to o) by the incremental equation

& = (—é: - %)&M (2.6)

where E is Young’s modulus, and E, is the slope of the uniaxial true stress-natural strain curve
for the matrix material at the current stress level oy. Thus, a material, for which void
nucleation is controlled by the plastic strain [8], can be modelled in terms of (2.5), by taking
s >0 and B = 0. For materials, in which nucleation is controlled by the maximum normal stress
on the particle-matrix interphase, Needleman and Rice[14] have suggested using the sum
o + 0¥/3 as an approximate measure of this maximum stress, thus taking o = ® in (2.5).

The final material failure, by local necking of the ligaments, is a process that develops mainly
as a function of material straining. Here, ¢, shall be used as a measure of this straining. Thus,
the last term in (2.1) is modeled by an expression of the form

Dtaiture = €ou 2.7

which is analogous with the first term on the right hand side of (2.5). As long as the void
volume fraction f is smaller than a critical value f., € = 0 is used in (2.7). However, for larger f
the void volume fraction is taken to increase linearly with €, so that total failure occurs after
an additional straining of magnitude Ae. Thus, using (2.6), the following expression is obtained

—(1_N\fu-fc >
@_(Er E) uole for f2 fe. @.8)

Here, fy is the ultimate value of the void volume fraction, at which no further macroscopic
stresses can be carried by the material.

The increment of the void volume fraction, (f)g,iue, Used here to simulate the effect of final
material failure could be assumed to depend on é," in a more complex manner than that
suggested by (2.8). However, the linear dependence is considered sufficient for the present
investigation.

The parameters o and ® in (2.5) are chosen so that void nucleation follows a normal
distribution [9). Thus, for a material with plastic strain controlled nucleation we shall use

= _l__l N ~112(epP - ep\)is2 =
o (E‘ E)—i—s S NI g = 0 2.9)

where fy is the volume fraction of void nucleating particles, ¢y is the mean strain for
nucleation, and s is the corresponding standard deviation. For a material with stress controlled
nucleation the similar expressions are

e ®=_IN__ it atin-ogysp
A=3 s\/(2‘"_)6 MY N (2.10)

where oy is the mean nucleation stress.
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The nonzero values of € and o specified by (2.8) and (2.9) are only used, if €, exceeds its
current maximum in the increment considered. Also, for stress controlled nucleation o = R =0
is used instead of (2.10), if the value of oy + 0:*/3 is not going to exceed the maximum value
reached in the previous stress history.

3. CONSTITUTIVE RELATIONS
The approximate yield condition derived by Gurson[5], based on a rigid-perfectly plastic
upper bound solution for spherically symmetric deformations around a single spherical void, is
of the form

- *‘fez {Qz (3 } 7
@-;;—;«1»2}‘(1, cosh 2 0w (I+g:f)=0 3.1

for 4= ¢ = q; = 1. Here, o, = (35;5%2)'” is the macroscopic effective Mises stress, and s =
o = GYM3 is the stress devnator

The eﬁectlve plastic strain € in the matrix material is assumed to vary according to the
equivalent plastic work expression

o'if = (1- Powér’. (3.2)

Thus, using (2.6), the following expression is found for the increment of the equivalent tensile
flow stress

. EE, Uﬂg
= E—E (- Now @3

The plastic part of the macroscopic strain rate is taken to be given by
— (3.4

since normality for the matrix material implies macroscopic nqrmality{iﬁ. The value of the
parameter A is determined from the consistency condition & =0, required during plastic
loading. Substituting (3.3), (2.1}, (2.5) and (2.7) into this condition gives

] 113 sy 3 S :

where ov"" is the Jaumann rate of the Cauchy stress tensor
M = 61 +(G*o" + Gty (3.6)
and the parameters a, £ and H are given by

_f o [@ ot = Boy 4P 7
a—zq,qzsmh{ia‘-,ﬁ a+=g o 3.7

H=%[-300-n - (G + o4 aau}EEEé.lif(g%“g)]‘ 38

During plastic loading, with & =0, the condition for continued plastic deformation is A=0
in (3.4)

faazvsafieso
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Thus, the yield surface differs from ® =0, unless 8 = a (% = 0). The function @ is still used as
a plastic potential, though.

When & =0 is reached during elastic deformation, the condition for plastic loading is that
& > 0 would result, if elastic deformation continued

[3 L BGH]O"‘ >0. (3.10)

When the macroscopic hardening rate H is negative, (3.10) differs from (3.9).
The total strain rate 1; is taken to be the sum of the plastic part %} and the elastic part

. 1 v
1§ = 51+ 1)GuGy — vGyGu} o™, @3.11)

The inverse of this sum is an expression of the form &% = R# 4 Ny, which is transformed into the
incremental constitutive relations

7 = L#g, G.12)

using (3.6) and the incremental form of (2.3). Detailed expressions for the instantaneous
moduli L™ are given in [10] and shall not be repeated here; but it should be emphasized that in
general L™ # i for the present model.

The ultimate value f,; of the void volume fraction, at which the macroscopic stress carrying
capacity vanishes, is a property of the assumed yield function. Thus, for o, = ¥ =0 eqn (3.1)
gives

2fvqi—1- g:f 2 = 0. (3.13)

In the function suggested by Gurson, q, = ¢, = g; = |, the ultimate void volume fraction is
fu = 1. This is due to the optimal material distribution implied by the spherically symmetric
model problem, in which average macroscopic stresses can be carried as long as the volume of
the central hole is smaller than that of the whole sphere.

Numerical studies of materials with periodically distributed circular cylindrical voids or
spherical voids have been compared with predictions of the continuum model{16, 17], and it has
been found that the agreement is considerably improved, if the yield condition suggested by
Gurson is modified by using the set of parameters g, = 1.5, g;=1 and ¢, = q,* in (3.1). For
q:=q,’ eqn (3.13) gives the ultimate void volume fraction fy =1/q;, and thus the value
corresponding to g, = 1.5 is fy; =2/3. It may be noted that, even though the choice of the
parameter value g, = 1.5 is based on computations for low void volume fractions, a value of f,
below unity is realistic. For example, the volume fraction of an array of * closely packed”
spherical voids is well below unity. Yield functions of the form (3.1), for ¢; = q,* and various
values of f are shown in Fig. 1.

When the void volume fraction reaches the value f;, in a material point, no more average
macroscopic stresses can be carried in that point (see Fig. 1), and the material separates

N\t.o

f/fu =0.01

3 4 a’;/aaM

Fig. 1. Yield surface dependence on the hydrostatic tension for various values of the void volume fraction,
when ¢; =1 and ¢; = g} in 3.1).
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completely. In a numerical computation this means that the boundary conditions should be
changed continuously, as a region characterized by f = f,; grows, and a free boundary develops.

In the present paper an alternative approximate approach shall be tried, which is easily
implemented in numerical computations. The material model described above is only used until
the void volume fraction reaches a value f¥, slightly smaller than f,. Subsequently, the “totally
fractured” material is described by an elastic-plastic constitutive law appearing from eqns
(3.1)-(3.12) by enforcing a constant void volume fraction f = f1. The only changes necessary in
doing so is replacing (2.1) by f =0 and prescribing 3®/3f =0 in (3.7) and (3.8). Furthermore,
the tangent modulus is given a small negative value, E, = g, — gy, to ensure that o) does not
increase. Here ¢, is the initial yield stress.

The approximate yield function used to describe the totally fractured material, for f = f¥,
ensures that o/o), remain small (see Fig. 1). However, as large inelastic strains develop in the
fractured region, these small stresses give rise to an energy dissipation not present in reality.
The approximation is better the closer to unity f#/fy is chosen.

The need to take into account that f = f, may be reached in the material is not only related
to the use of a failure model such as (2.7). Even in the absence of (2.7) the critical volume
fraction will be reached, uitimately, aithough at somewhat higher strains.

The expression (3.11) assumed for the elastic part of the strain rate is only a good
approximation as long as f < 1. However, the error due to neglecting voids in this expression in
strongly damaged material regions is expected to be small, since the elastic contribution to the
straining remains small throughout the deformation history.

4, SHEARBANDDEVELOPMENT IN UNIFORMLY STRAINED SOLIDS

If an initial material inhomogeneity is assumed inside a thin, plane slice of material and the
stress-states inside and outside this slice of material, respectively, as assumed to remain
homogeneous throughout the deformation history, a relatively simple model problem for the
study of shear band development is obtained. This model has been used by Yamamoto [18] to
study the influence of an inhomogeneous void volume fraction distribution, based on Gurson’s
constitutive law, and Saje et al.[19] have included the influence of void nucleation.

Using the initial state as reference and a Cartesian reference coordinate system, the
principal directions outside the band are taken to remain fixed, parallel with the x'-axes. The
major principal stress outside the band is taken to be in the x'-direction (Fig. 2). The slice of
material containing the initial inhomogeneity is assumed parallel withthe x*-axis, with the initial
angle of inclination ¢; and the unit normal vector n;

Compatibility requires no jump in tangential derivatives of the displacements u; over the
band interphase. Thus

ubp=ud g+ cang, u3s=uls “.1)
where ()® and ()° denote quantities inside and outside the band, respectively, ¢, are parameters
to be determined, an Greek indices range from 1 to 2.
Equilibrium requires continuity of nominal tractions T* over the band interphase
(T*)’ =(T°) 4.2)
where the tractions on a surface with reference normal n; are given by

Ti = (rii + »rj"ufk)n,-. (43)

2
lx——. w
x1

Fig. 2. Specimen in which a thin slice of material contains an initial inhomogeneity.
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Now, substituting the incremental form of (4.3) into the incremental form of (4.2), using (2.2),
(3.12) and (4.1), gives two incremental equations for ¢é,, provided that the stress or strain state
outside the band is prescribed.

In the cases to be considered here the the state outside the band is taken to be characterized
by the following fixed ratios of principal logarithmic strains ¢ and principal true stresses o;

&' = y&', 0 = k" (“4.4)

where y and x are constants. The uniaxial true stress-logarithmic strain curve is taken to be
represented by the piecewise power law

foro=< o,

tyla

€= (4.5)

o, fo\"
=2{—},foro>
E(U,)’ 0’y

where o, is the uniaxial yield stress, and n is the strain hardening exponent. Thus, for given
values of the initial void volume fraction f; and the nucleation and failure parameters, inside
and outside the band, respectively, the solution is obtained incrementally.

The faiture criterion usually applied, both for void containing materials{18, 19] and for other
material descriptions[20], is strain rate reversal (elastic unloading) outside the band. Subsequent
to this event high straining occurs inside the narrow band without contributing much to the
overall straining of the body. However, in the present investigation, where modelling final.
material failure is of primary interest, the computations shall be continued beyond the point of
elastic unloading.

Computations are carried out for a material with the initial yield stress specified by
o,/ E = 0.0033, Poisson’s ratio » = 0.3 and the strain hardening exponent n = 10. Void nucleation
is taken to be plastic strain controlled, according to (2.9), with fy =0.04, ¢y =0.3 and s =0.1.
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Fig. 3. Strain outside band ¢,°, nominal traction T;, and void volume fraction £, versus maximum principal
logarithmic strain ex,,, inside band; for =0, 0 =0, §; = 32.0°, f# =001, ¢, = 1 and fH/fy, =095.
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Fig. 4. Strain outside band ¢,°, nominal traction T}, and void volume fraction £, versus maximum principal
logarithmic strain e, inside band; for €°= ¢°, 0, = 0:°=0, ¢y = 3.5°, f* = 0.01, ¢, = 1 and f#/f, = 0.95.
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The initial void volume fraction inside the band is taken to be f,” =0.01, whereas outside the
band f=0. In all cases g, =1 and g, = q,” is used for the yield function (3.1).

The parameter value g, = 1, and thus fy; = 1, is employed in Figs. 3 and 4 for uniaxial plane
strain tension (y = « =0) and for uniaxial tension (y =1, x =0), respectively. Furthermore,
fc=0.2 and Ae = 0.25 are used in the material failure model (2.8) and at final failure f}/f, =
0.95 is assumed. The initial band inclinations in the two cases are taken to be ¢; =32.0° and
¥ = 3.5° respectively, and the strains at which elastic unloading occurs outside the band agree
with those found by Saje, Pan and Needieman[19] for the same initial angles. It should be noted
that Saje et al.[19] have also determined the critical values of ¢, for which localization occurs
at the smallest possible strain, whereas here one particular angle is chosen, slightly below the
critical value.

Figures 3 and 4 show plots of the principal logarithmic strain ¢,°, the nominal traction T}, and
the current void volume fraction f, versus the maximum principal logarithmic strain e’,, inside
the band. In Fig. 3 the void volume fraction at elastic unloading is only around 0.04 inside the
band, so that considerable further straining is required, before the process of final material
failure starts according to (2.7) and (2.8). In Fig. 4 elastic unloading outside the band occurs at a
larger void volume fraction, f® =0.20, and in this case also the void volume fraction outside the
band grows to a noticeable level. As soon as the critical volume fraction fc is reached, so that
the failure model (2.7) is active inside the band, the load carrying capacity decays rapidly
towards zero and f® approaches unity. Clearly, the cut-off at the volume fraction f} slightly
smaller than f, is not realistic. However, it is noticed that with this artificial cut-off the
computation continues beyond the point at which some material is totally fractured, without
changes of the boundary conditions.

If Figs. 5 and 6 the computations of the two previous figures are repeated for the parameter
value ¢; = 1.5 in the yield condition (3.1), and thus fy = 2/3. This results in smaller strains ¢,°
outside the band at localization, as expected[16, 17]. It is seen that also here the nominal
tractions vanish, as the void volume fraction approaches the ultimate value f.

In the plane strain case, Fig. 5, computations for two additional sets of parameters, fc = 0.15
and Ae = 0.4 or 0.6 in the failure model (2.8), are included too. The values of the strain €2,, at

20 — — 2.0 —r v T 1.0
50 . o f
1 x load maximum T,/ 08}
15 . . -
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0.6¢ e s~
10 /S
0.4 " 4
05 L Y -
- 0.2} ¢
0 —

0 05 10 1.552‘02,0 % s 10 15¢0 20
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Fig. 5. Strain outside band ¢,°, nominal traction T), and void volume fraction f, versus maximum principal
logarithmic strain €, inside band; for =0, o;,°=0, ¢, =32.0°, f# =0.01, q, = 1.5 and f3/fy =0.95.
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Fig. 6. Strain outside band ¢,°, nominal traction T}, and void volume fraction f, versus maximum principal
logarithmic strain €2, inside band; for €,°=&°, 0:°=0"=0, §;=3.5°, f =001, ¢, = 1.5 and fH/fy =
0.9s.
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Fig. 7. Strain outside band ¢,%, nominal traction T, and void volume fraction £, versus maximum principal
logarithmic strain €’,, inside band; for & =0, y° =0.25 ¢\, ¢, =37.0°, £ =0.01, ¢, = 1.5 and fH/fy, =

0.95.
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Fig. 8. Strain outside band ¢,°, nominal traction T, and void volume fraction f, versus maximum principal
logarithmic strain €, inside band; for &°=¢°, ay°=0"=0.25 &°, ¢y =25.0°, f# =001, ¢;=1.5 and
fHfu =095

which final failure occurs for the three different sets of parameters differ rather little, but are much
smaller than the failure strain found using Gurson’s model without the additional failure term (2.7),
by specifying fc = fu.

In the case of uniaxial tension, Fig. 6, a smaller value of the strain ¢,° at localization is found
for fc =0.15 and Ae = 0.4 than for f- =0.20 and Ae = 0.25. This difference occurs because for
the former set of parameters the void volume fraction f. is reached inside the band before
elastic unloading takes place outside the band.

The curves shown in Figs. 7 and 8 are obtained for « = 0.25 in (4.4), so that the stress states
outside the band may be considered representative of the situations in a notched plane strain
specimen and in a notched axisymmetric specimen, respectively. The results are similar with
those found in the previous four figures. An additional computation for (f)qiue =0 in Fig. 7
(fc = fu) shows that, as in Fig. 5, the value of the strain €’,,, at which the material separates
completely, is strongly influenced by using the model (2.7) to describe accelerated material
failure at the later stages of void growth due to necking of the ligaments.

The computations for the simple shear band model in Figs. 3-8 illustrate various con-
sequences of using the material failure model (2.7) and of using a fictitious final void volume
fraction [} slightly below the ultimate value fy. In the linear incremental method used to obtain
these solutions the size of the strain increment allowable from the point of view of numerical
stability depends on the choice of the parameters Ae and f%/f,. For material points in the range
fe <f <[t smaller strain increments are required, if Ae is chosen smaller, and in the range
f=f% the allowable strain increment decreases, if the parameter f¥/fy is chosen closer to
unity.

S.LOCALIZATION BETWEEN LARGER VOIDS

In a recent investigation of a ductile fracture mechanism involving the interaction of
relatively large microscopic voids with small-scale voids the approximate constitutive equations
for a ductile, porous medium have been used to model the smaller voids[10]. The material is
taken to initially contain a periodic array of circular cylindrical voids (Fig. 9), which makes it
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Fig. 9. Periodic array of circular cylindrical voids.

possible to reduce the computational problem by applying a number of symmetries. In the
matrix material between the larger voids the volume fraction f of small-scale voids is taken to
be zero initially, but nucleation occurs according to (2.5) and (2.9) or (2.10).

In this material failure of the ligament between two larger voids occurs by the formation of a
shear band, in which narrow regions with high volume concentrations of small-scale voids grow
from the surfaces of the larger voids. The failure criteria used in[10] are f > 0.1 or f > 0.2 over
either 35, 60 and 100% of the ligament separating two larger voids. Such points of failure have
been computed under plane strain conditions for various prescribed ratios of the principal
stresses in the x'- and x’-direction and under various conditions of generalized plane strain
chosen to approximately simulate material behaviour inside a round tensile bar, It is found that
all these failure points for different stress states are reasonably well approximated by a single
curve in a plot of the stress triaxiality parameter (mean stress/effective Mises stress) versus
effective strain. This result agrees very well with recent experimental results of Hancock and
Brown[21), who found a similar common fracture curve for round notched specimens and for
plane strain notched specimens made of structural steels. It should be noted that such a
common fracture curve is not predicted by the simpler model considered in Section 4.
According to the simpler model materials are far more resistant to shear band formation when
strained under axisymmetric conditions than under plane strain conditions.

Here the model of final material failure (2.7) shall be introduced in the numerical analysis of
the ductile fracture mechanism involving two size-scales of voids, instead of the failure criteria
used in {10]. It is not expected that this will significantly change the failure strains found in the
previous analysis; but the more realistic description of the loss of load carrying capacity in the
heavily damaged regions will accelerate the stress redistribution and thus better represent the
growing failure process.

A detailed description of the numerical procedure has been given in [10] and shall not be
repeated here. Due to symmetries only half of the region DEFG in Fig. 9 needs be analysed
pumerically. The grid employed in the incremental finite element solution (see Fig. 10) consists of
quadrilaterals, each build up of four linear displacement triangular elements.

Fig. 10. Mesh used in numerical solution.
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The case considered here is uniaxial plane strain tension in the x*-direction, with the initial
geometry specified by By/Ao=0.7111, Ry/Ao=0.1167 and ¢o= 11.25°. Thus, the initial angle of
the line along which a narrow shear band can be described by the mesh is i = 40.8°. The matrix
material is specified by the same parameters used in Figs. 5-8, with ¢/E = 0.0033, » = 0.3,
n =10, ¢, = 1.5 the initial void volume fraction f; =0 and plastic strain controlled nucleation
fnu =004, ey =03 and s =0.1. Furthermore, in the material failure model (2.8) the parameter
values fo=0.15 and Ae = 0.6 are used, and at *total failure” f§/f; = 0.9 is employed. Various
sets of the parameters fc- and Ae could give approximately equal descriptions of final material
failure; but here a relatively large value of Ae is chosen in order to increase the stable step-size
in the incremental solution, and for the same reason the value f#/f;, is chosen well below unity.

The average nominal traction Ty versus the average principal logarithmic strain €y in the
x*-direction is shown in Fig. 11 and compared with the result obtained in [10] for the same case
without the model of final material failure (f; = fy). At an early stage of the deformation history
strain concentrations develop near the cylindrical void surfaces and small-scale voids nucleate
in these regions. Subsequently, the straining and the nucleation and growth of voids starts to
localize in narrow bands that grow into the material from the surfaces of the larger voids at
inclinations of about 40°. During this process the maximum load is reached and immediately
after, the void volume fraction reaches the value f, in one integration point, so that the failure
model (2.7) and (2.8) becomes active. Figure 11 shows that subseguently, as the material
separates by a void-sheet mechanism inside the growing shear band, the load decays more
rapidly as a function of strain than was found in [10] for (/e = 0.

The first totally damaged material point (f = f#) occurs at ¢; = 0.044, and subsequently
the fractured region grows until the void volume fraction equals f§ in a slice of material all
through the ligament, at a strain ¢; around 0.075. At on intermediate stage, ¢; = 0.065, the
deformed grid is shown in Fig. 12 and the distribution of void volume fractions f and maximum
principal logarithmic strains ¢ are shown in Fig. 13. The strain localization is most clearly

2.0
Ty /4y
1.20.20. a£=0.25
154 € o

»*
fU fo =0.95

1.0} ~ ]
— c = f{}
fcz 015, at=056
s * -
1 fu /fu 0.9
X maximum
0 . o

Y] .02 0.04 006 008 EII 010

Fig. 11. Average nominal traction versus average logarithmic strain for material defined by B,/4,=0.7111
and Ryl Ay = 0.1167, subject to uniaxial plane strain tension.

Fig. 12. Deformed grid at ¢, = 0.065, for fo =0.15, Ae = 0.6 and f/fy =09.
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{a) {b)

Fig. 13. Curves of constant void volume fraction f and of constant maximum principal logarithmic strain ¢,
at ¢ = 0,065, for fr=0.15, Ae =06 and fH/f, =009.

illustrated by Fig. 13(b), but is also directly visible in the deformed mesh (compare Figs. 12 and
10). Figure 13(a) shows that about 45% of the ligament between the two larger voids is “totally
fractured” (f = f¥) at this stage, and that the remaining part of the ligament is heavily damaged.

At the last stage of the traction versus strain curve in Fig. 11 an increasing part of the load is
carried by the fictitious low stresses, due to choosing the value {1 smaller than fg, in the regions
where voids have coalesced. Obviously, a better approximation would be found by choosing
fH fu closer to unity; but, at the same time, smaller increments would be required for numerical
stability. The gradual decay of the negative slope at the end of the curve in Fig. 11 is partly due
to the chosen value of f%, analogous with the final, dotted horizontal curves in Figs. 3-8, but
depends also on the mesh design (Fig. 11), which enforces a doubled band width near point 0.

In Fig. 11 the initial part of the solution for failure parameters f- =0.20, Ae =0.25 and
fHfu =0.95 is shown. Naturally, with the larger value of f. failure starts slightly later; but
otherwise the curve obtained for these parameters is approximately parallel with the initial part
of the curve obtained for the first set of parameters, as would be expected from the
comparisons in Fig. 5. Due to the smaller value of Ae and the larger value of f¥fy,
considerably smaller increments must be used in the linear incremental solution, and thus a
complete numerical solution for this set of parameters would be a great deal more costly than
that obtained for the first set of parameters.

The initial volume fraction of larger voids in the present computations is 0.03; but it should
be noted that in using the failure criterion based on a certain critical void volume fraction f,
the volume fraction of larger voids is not taken into account. Naturally, the critical volume
fraction represents a local measure of the size of approximately identical neighbouring voids
relative to their spacing. In fact, it was emphasized by Brown and Embury[7] that in
technological materials the effect of small strengthening particles and macroscopic inclusions
cannot be added in defining the critical volume fraction.

6. DISCUSSION

The model applied in the present paper to describe the average macroscopic effect of final
material failure by coalescence of voids is arbitrary in some respects. Introducing the extra
term (P in (2.1) means that in the later stages of deformation f is no longer just the volume
fraction of holes, but a more general measure of damage, including also the concept of a
volume fraction of inactive material. Furthermore, the particular functional dependencies used
in {2.7) and (2.8) are by no means the only natural choices that could have been made.
However, it seems that the model used does give a reasonable description of the most
important effect, which is the rapid decay of material stress carrying capacity once the final
process of coalescence is taking place. It should be possible in many cases to choose the values
of the parameters fc and Ae so that observed material behaviour is reasonably well described.

The values of the critical void volume fraction f- used here are based on experimental
results[7, 8], and the nonzero values of Ae account for small amounts of straining during
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necking of ligaments and for the expectation that not all neighbouring voids coalesce simul-
taneously. From a theoretical point of view a more detailed understanding of the parameter
values to be used in the failure model (2.8) could be obtained by numerical studies for various
periodic void distributions, analogous with[4, 16, 17]. These previous numerical studies did not
emphasize the development of current void volume fractions, needed to estimate f.. However,
since deformed void shapes tend to vary considerably with the degree of triaxiality of the stress
state[3] some stress state dependence of f- could be expected.

The isotropic material behaviour assumed in the Gurson model is expected to give a
reasonable approximation for low void volume fractions (see [16, 17]), provided that the initial
inclusion distribution is not too anisotropic. However, the final coalescence process may be
highly anisotropic, and retaining isotropy of the constitutive law in this range is mainly a
question of convenience in describing the rapid local decay in stress-carrying capacity.

The process of a growing failure region inside a thin slice of material analysed in Section § is
analogous with other processes in the area of fracture mechanics that also require a complex
continuum solution. The problem in Section 5 is characterized by a growing shear band inside
which the material fails gradually by a void sheet mechanism; but in fact the situation shown in
Fig. 13 looks much like that of a growing crack. In crack growth computations based on J, flow
theory[22, 23] the crack extension has been modeled directly as a growing free surface, and
comparison with experimental results [23] have indicated that a critical value of the crack
opening angle may be a useful growth criterion after a small amount of initial extension. If the
constitutive relations for a void containing material were used in such a computation, the loss
of material stress carrying capacity would be the natural crack growth cirtiterion. The
computation would be quite similar with that described in Section 5, and nodes could be
released to extend the crack each time the ultimate void volume fraction fy is reached at the
crack tip.

It should be emphasized that the use of a fictitious elastic-plastic model to describe totally
fractured material, for a fixed void volume fraction f}; slightly smaller than f, is completely
independent of whether or not the material failure model (2.7) and (2.8) is included in the analysis.
No material point can be allowed to exceed the ultimate value f of the void volume fraction, and
some measure to prevent this event must be included in the analysis. Releasing nodes to create new
free surfaces inside the material as fracture occurs would provide a more precise description of the
failure process, and this is not too difficult in cases where the location of the nodes to be released is
known before starting the computation. Letting the elements vanish when the void volume fraction
reaches the value f}; is another possibility that is being investigated currently. This alternative
description of the totally fractured material has the same advantage as the fictititous elastic-plastic
model used here that a need to specify changing boundary conditions during a computation is
avoided, and results obtained by the two methods are in good agreement.

From the point of view of numerical stability the fictitious elastic-plastic description of the
failed zone does require small increments. However, for the values of the parameters f}/f, and
A€ used in the present investigation, the limitations on the increment size due to the failure
description (2.8) are of the same order of magnitude as that resulting from the description of the
failed zone.
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